23 research outputs found

    Incorporation of a Dietary Omega 3 Fatty Acid Impairs Murine Macrophage Responses to Mycobacterium tuberculosis

    Get PDF
    by creating an immunosuppressive environment. We hypothesized that incorporation of n-3 PUFA suppresses activation of macrophage antimycobacterial responses and favors bacterial growth, in part, by modulating the IFNγ-mediated signaling pathway.. The fatty acid composition of macrophage membranes was modified significantly by DHA treatment. DHA-treated macrophages were less effective in controlling intracellular mycobacteria and showed impaired oxidative metabolism and reduced phagolysosome maturation. Incorporation of DHA resulted in defective macrophage activation, as characterized by reduced production of pro-inflammatory cytokines (TNFα, IL-6 and MCP-1), and lower expression of co-stimulatory molecules (CD40 and CD86). DHA treatment impaired STAT1 phosphorylation and colocalization of the IFNγ receptor with lipid rafts, without affecting surface expression of IFNγ receptor. in response to activation by IFNγ, by modulation of IFNγ receptor signaling and function, suggesting that n-3 PUFA-enriched diets may have a detrimental effect on host immunity to tuberculosis

    An in Vivo Experiment to Assess the Validity of the Log Linearized Hunt-Crossley Model for Contacts of Robots with the Human Abdomen

    No full text
    International audienceA key issue in Human-Robot physical interaction is the real-time perception of contact impedance by the robot. The Hunt-Crossley (HC) model is a popular model of contact force with soft biological tissues as it enjoys accuracy with low-complexity properties and its parameters are physically sound. Because the original HC model is non-linear, the current best known approach of real-time identification consists in identifying the parameters of a log linearized version of the HC model, by means of a Recursive Least Squares (RLS) algorithm. But, the final model used for exploitation in robot control, is the original non-linear HC model with the previously identified parameters. Hence, this approach may be questionable concerning the modeling accuracy and some authors prefer rejecting the HC model. This paper presents for the first time an in vivo experiment to assess the performances of contact models with the human abdomen. In particular we show here through a statistical analysis, that the log linearized HC model should be considered as a contact model on its own and replace the original non-linear HC model for both identification and exploitation

    Complete design methodology of biomimetic safety device for cobots’ prismatic joints

    No full text
    International audienceMaking robots collaborate safely with humans has created a new design paradigm involving the biomimetic mechanical behavior of robots’ joints. However, few authors have contributed to the problems of safety in pure linear motion, i.e. a prismatic joint, in contrast to rotary motion. The contribution of this work is to present a new design that is capable of achieving, passively, an implementation of nonlinear elastic behavior for prismatic joints—the so-called Prismatic Compliant Joint (PCJ). This new device is based on the association of a six-bar mechanism with a linear spring. Hence, this structure generates a nonlinear stiffness behavior under a specified external force. The elastic characteristics of the PCJ are derived from a generic biological muscle mechanical behavior model and then customized according to the force-safety criteria of physical Human/Robot Interaction (pHRI) into a Hunt–Crossley contact model. A further investigation is carried out, via simulation, to verify the shock absorption capacity of the PCJ with a dummy head obstacle. In order to fit the PCJ response curve to the established safety measures, an optimization based on a genetic algorithm method is employed to tune the PCJ’s intrinsic parameters subject to some chosen constraints

    Accounting for respiratory motions in online mechanical impedance estimation

    No full text
    International audienceThe aim of this work is to improve the safety and control robustness of robots interacting physically with humans by enhancing their contact perception. More specifically in the abdominal area, respiratory motions are clearly influencing the contact dynamics but have not yet been accounted for in the estimation of the contact impedance. We propose here a combined mechanical-respiratory model of impedance along with its on-line identification. Numerical and practical experiments with living subjects validate the identification process and show the relevance in accuracy of accounting for the respiratory beats

    A Ka-Band electronically tunable ferroelectric filter

    No full text
    International audienc
    corecore